70 research outputs found

    Bacterial Metabolism under FHA Control

    No full text
    International audienceThe NMR structures of Corynebacterium glutamicum OdhI described by Barthe et al. in this issue of Structure reveal a major conformational rearrangement upon phosphorylation, suggesting an autoinhibition mechanism that accounts for the functional properties of the protein as a regulatory switch in glutamate metabolism

    2-Oxoglutarate Dehydrogenase Complex

    No full text
    International audienc

    Structure-Based Drug Design for Tuberculosis: Challenges Still Ahead

    No full text
    We are grateful to all our past and present colleagues from the Structural Microbiology Unit, as well as collaborators from the former MM4TB Consortium, for so many fruitful exchanges and insightful discussions.International audienceStructure-based and computer-aided drug design approaches are commonly considered to have been successful in the fields of cancer and antiviral drug discovery but not as much for antibacterial drug development. The search for novel anti-tuberculosis agents is indeed an emblematic example of this trend. Although huge efforts, by consortiums and groups worldwide, dramatically increased the structural coverage of the Mycobacterium tuberculosis proteome, the vast majority of candidate drugs included in clinical trials during the last decade were issued from phenotypic screenings on whole mycobacterial cells. We developed here three selected case studies, i.e., the serine/threonine (Ser/Thr) kinases—protein kinase (Pkn) B and PknG, considered as very promising targets for a long time, and the DNA gyrase of M. tuberculosis, a well-known, pharmacologically validated target. We illustrated some of the challenges that rational, target-based drug discovery programs in tuberculosis (TB) still have to face, and, finally, discussed the perspectives opened by the recent, methodological developments in structural biology and integrative techniques

    Insights into the Catalytic Mechanism of PPM Ser/Thr Phosphatases from the Atomic Resolution Structures of a Mycobacterial Enzyme

    Get PDF
    International audienceSerine/threonine-specific phosphatases (PPs) represent, after protein tyrosine phosphatases, the second major class of enzymes that catalyze the dephosphorylation of proteins. They are classed in two large families, known as PPP and PPM, on the basis of sequence similarities, metal ion dependence, and inhibitor sensitivity. Despite their wide species distribution and broad physiological roles, the catalytic mechanism of PPM phosphatases has been primarily inferred from studies of a single enzyme, human PP2Calpha. Here, we report the biochemical characterization and the atomic resolution structures of a soluble PPM phosphatase from the saprophyte Mycobacterium smegmatis in complex with different ligands. The structures provide putative snapshots along the catalytic cycle, which support an associative reaction mechanism that differs in some important aspects from the currently accepted model and reinforces the hypothesis of convergent evolution in PPs

    Structural Basis for the Binding of Allosteric Activators Leucine and ADP to Mammalian Glutamate Dehydrogenase

    No full text
    International audienceGlutamate dehydrogenase (GDH) plays a key role in the metabolism of glutamate, an important compound at a cross-road of carbon and nitrogen metabolism and a relevant neurotransmitter. Despite being one of the first discovered allosteric enzymes, GDH still poses challenges for structural characterization of its allosteric sites. Only the structures with ADP, and at low (3.5 Ă…) resolution, are available for mammalian GDH complexes with allosteric activators. Here, we aim at deciphering a structural basis for the GDH allosteric activation using bovine GDH as a model. For the first time, we report a mammalian GDH structure in a ternary complex with the activators leucine and ADP, co-crystallized with potassium ion, resolved to 2.45 Ă…. An improved 2.4-angstrom resolution of the GDH complex with ADP is also presented. The ternary complex with leucine and ADP differs from the binary complex with ADP by the conformation of GDH C-terminus, involved in the leucine binding and subunit interactions. The potassium site, identified in this work, may mediate interactions between the leucine and ADP binding sites. Our data provide novel insights into the mechanisms of GDH activation by leucine and ADP, linked to the enzyme regulation by (de)acetylation

    A dual conformation of the post-decarboxylation intermediate is associated with distinct enzyme states in mycobacterial KGD (α-ketoglutarate decarboxylase)

    No full text
    International audienceα-Ketoacid dehydrogenases are large multi-enzyme machineries that orchestrate the oxidative decarboxylation of α-ketoacids with the concomitant production of acyl-CoA and NADH. The first reaction, catalysed by α-ketoacid decarboxylases (E1 enzymes), needs a thiamine diphosphate cofactor and represents the overall rate-limiting step. Although the catalytic cycles of E1 from the pyruvate dehydrogenase (E1p) and branched-chain α-ketoacid dehydrogenase (E1b) complexes have been elucidated, little structural information is available on E1o, the first component of the α-ketoglutarate dehydrogenase complex, despite the central role of this complex at the branching point between the TCA (tricarboxylic acid) cycle and glutamate metabolism. In the present study, we provide structural evidence that MsKGD, the E1o (α-ketoglutarate decarboxylase) from Mycobacterium smegmatis, shows two conformations of the post-decarboxylation intermediate, each one associated with a distinct enzyme state. We also provide an overall picture of the catalytic cycle, reconstructed by either crystallographic snapshots or modelling. The results of the present study show that the conformational change leading the enzyme from the initial (early) to the late state, although not required for decarboxylation, plays an essential role in catalysis and possibly in the regulation of mycobacterial E1o

    Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases

    No full text
    International audienceProtein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPKs structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establishes PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria

    Structural and Binding Studies of the Three-metal Center in Two Mycobacterial PPM Ser/Thr Protein Phosphatases

    No full text
    International audiencePhospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the alpha isoform of human PP2C (PP2Calpha), which folds into an alpha/beta domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn(2+)-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions

    Conformational transitions in the active site of mycobacterial 2-oxoglutarate dehydrogenase upon binding phosphonate analogues of 2-oxoglutarate: From a Michaelis-like complex to ThDP adducts

    No full text
    International audienceMycobacterial KGD, the thiamine diphosphate (ThDP)-dependent E1o component of the 2-oxoglutarate dehydrogenase complex (OGDHC), is known to undergo significant conformational changes during catalysis with two distinct conformational states, previously named as the early and late state. In this work, we employ two phosphonate analogues of 2-oxoglutarate (OG), i.e. succinyl phosphonate (SP) and phosphono ethyl succinyl phosphonate (PESP), as tools to isolate the first catalytic steps and understand the significance of conformational transitions for the enzyme regulation. The kinetics showed a more efficient inhibition of mycobacterial E1o by SP (Ki 0.043 ± 0.013 mM) than PESP (Ki 0.88 ± 0.28 mM), consistent with the different circular dichroism spectra of the corresponding complexes. PESP allowed us to get crystallographic snapshots of the Michaelis-like complex, the first one for 2-oxo acid dehydrogenases, followed by the covalent adduction of the inhibitor to ThDP, mimicking the pre-decarboxylation complex. In addition, covalent ThDP-phosphonate complexes obtained with both compounds by co-crystallization were in the late conformational state, probably corresponding to slowly dissociating enzyme-inhibitor complexes. We discuss the relevance of these findings in terms of regulatory features of the mycobacterial E1o enzymes, and in the perspective of developing tools for species-specific metabolic regulation

    Functional Plasticity and Allosteric Regulation of α-Ketoglutarate Decarboxylase in Central Mycobacterial Metabolism

    Get PDF
    International audienceThe α-ketoglutarate dehydrogenase (KDH) complex is a major regulatory point of aerobic energy metabolism. Mycobacterium tuberculosis was reported to lack KDH activity, and the putative KDH E1o component, α-ketoglutarate decarboxylase (KGD), was instead assigned as a decarboxylase or carboligase. Here, we show that this protein does in fact sustain KDH activity, as well as the additional two reactions, and these multifunctional properties are shared by the Escherichia coli homolog, SucA. We also show that the mycobacterial enzyme is finely regulated by an additional acyltransferase-like domain and by the action of acetyl-CoA, a powerful allosteric activator able to enhance the concerted protein motions observed during catalysis. Our results uncover the functional plasticity of a crucial node in bacterial metabolism, which may be important for M. tuberculosis during host infection
    • …
    corecore